Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting the minimum operating voltage Vmin of chips stands as a crucial technique in enhancing the speed and reliability of manufacturing testing flow. However, existing Vmin prediction methods often overlook various sources of variations in both training and deployment phases. Notably, overlooking wafer zone-to-zone (intra-wafer) variations and wafer-to-wafer (inter-wafer) variations diminishes the accuracy, data efficiency, and reliability of Vmin predictors. To address this challenge, we propose Restricted Bias Alignment (RBA), a novel data-efficient Vmin prediction framework that introduces a variation alignment technique to simultaneously estimate inter- and intra-wafer variations. Furthermore, we propose utilizing class probe data to model inter-wafer variations for the first time.more » « lessFree, publicly-accessible full text available April 28, 2026
-
The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Accurate minimum operating voltage Vmin prediction is a critical element in manufacturing tests. Conventional methods lack coverage guarantees in interval predictions. Conformal Prediction (CP), a distribution-free machine learning approach, excels in providing rigorous coverage guarantees for interval predictions. However, standard CP predictors may fail due to a lack of knowledge of process variations. We address this challenge by providing principled conformalized interval prediction in the presence of process variations with high data efficiency, where the data from a few additional chips is utilized for calibration. We demonstrate the superiority of the proposed method on industrial 16nm chip data.more » « less
-
Predicting the minimum operating voltage Vmin of chips is one of the important techniques for improving the manufacturing testing flow, as well as ensuring the long-term reliability and safety of in-field systems. Current Vmin prediction methods often provide only point estimates, necessitating additional techniques for constructing prediction confidence intervals to cover uncertainties caused by different sources of variations. While some existing techniques offer region predictions, but they rely on certain distributional assumptions and/or provide no coverage guarantees. In response to these limitations, we propose a novel distribution-free Vmin interval estimation methodology possessing a theoretical guarantee of coverage. Our approach leverages conformalized quantile regression and on-chip monitors to generate reliable prediction intervals. We demonstrate the effectiveness of the proposed method on an industrial 5nm automotive chip dataset. Moreover, we show that the use of on-chip monitors can reduce the interval length significantly for Vmin prediction.more » « less
-
Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks.more » « less
-
null (Ed.)Many news outlets allow users to contribute comments on topics about daily world events. News articles are the seeds that spring users' interest to contribute content, i.e., comments. An article may attract an apathetic user engagement (several tens of comments) or a spontaneous fervent user engagement (thousands of comments). In this paper, we study the problem of predicting the total number of user comments a news article will receive. Our main insight is that the early dynamics of user comments contribute the most to an accurate prediction, while news article specific factors have surprisingly little influence. This appears to be an interesting and understudied phenomenon: collective social behavior at a news outlet shapes user response and may even downplay the content of an article. We compile and analyze a large number of features, both old and novel from literature. The features span a broad spectrum of facets including news article and comment contents, temporal dynamics, sentiment/linguistic features, and user behaviors. We show that the early arrival rate of comments is the best indicator of the eventual number of comments. We conduct an in-depth analysis of this feature across several dimensions, such as news outlets and news article categories. We show that the relationship between the early rate and the final number of comments as well as the prediction accuracy vary considerably across news outlets and news article categories (e.g., politics, sports, or health).more » « less
An official website of the United States government

Full Text Available